

Available online at www.sciencedirect.com

Tetrahedron: *Asymmetry*

Tetrahedron: Asymmetry 19 (2008) 343-347

Enantioselective total synthesis of hydramicromelin B

Xing Huo,^a Xingfeng Ren,^c Yanfen Xu,^a Xinyun Li,^a Xuegong She^{a,b,*} and Xinfu Pan^{a,*}

^aDepartment of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China ^bState Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics,

Chinese Academy of Sciences, Lanzhou 730000, PR China

^cCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China

Received 28 November 2007; accepted 5 January 2008

Abstract—The first total synthesis of hydramicromelin B is described. An AuCl₃/AgOTf-catalyzed intramolecular reaction was used as key step for the construction the coumarin ring. \bigcirc 2008 Elsevier I td. All rights reserved

© 2008 Elsevier Ltd. All rights reserved.

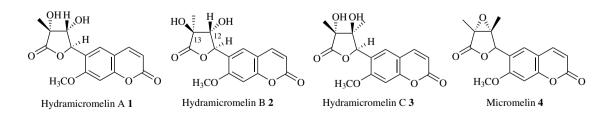
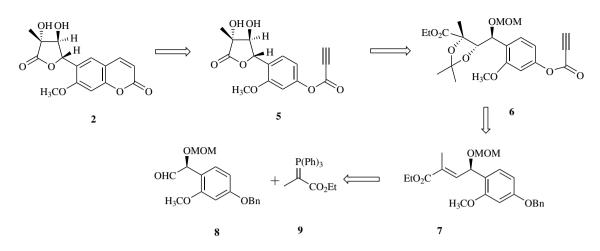
1. Introduction

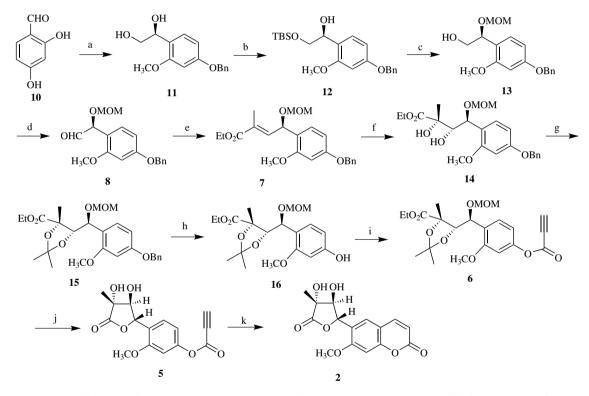
Micromelin 4, a product with a skeleton of coumarin, was first isolated by Price¹ in 1966. It showed significant inhibition against leukemia p-338 cell line (T/C 149% at 10 mg/ kg) and excellent activity against Lewis lung carcinoma (T/C 228% at 1.25 mg/kg).² Recently, three new derivatives of micromelin, hydramicromelins A–C 1–3, were isolated from the aerial part of *M. Integerrimum* and the relative configurations established by Hao² (Fig. 1). Hydramicromelins A–C process a coumarin ring and a five-membered lactone ring. Their significant biological activities and unique structures inspired us to achieve their total synthesis. Herein, we describe the first enantioselective synthesis and establish the absolute configuration of hydramicromelin B.

The retrosynthetic analysis is depicted in Scheme 1. Construction of the coumarin ring was envisioned via an AuCl₃/AgOTf-catalyzed coupling reaction of **5**. The fivemembered lactone ring of **5** could be generated by the removal of all protecting groups and spontaneous ring closure of **6** under acidic conditions. A few functional group transformations would provide **6** from α , β -unsaturated ester **7**, which would be derived from aldehyde **8** and known ylide **9** via by a Wittig-Horner-Emmons (WHE) reaction.

2. Results and discussion

Our synthetic strategy is outlined in Scheme 2. The diol compound 11 was prepared from 2,4-dihydroxybenzaldehyde 10 via a four-step synthesis including selective protection of hydroxyls at the *para* and *ortho* position, Wittig olefination and dihydroxylation of the corresponding olefin in 80% overall yield.³ Monoprotection of the primary hydroxyl group of 11 with TBSCl gave alcohol 12 in 95% yield and its enantiomeric purity was determined as 99%


Figure 1.

* Corresponding authors. Tel.: +86 931 8912407 (X.S.); e-mail: shexg@lzu.edu.cn

^{0957-4166/\$ -} see front matter 0 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2008.01.006

Scheme 1.

Scheme 2. Reagents and conditions: (a) (i) NaHCO₃, BnBr, CH₃CN, 80 °C; (ii) Me₂SO₄, K₂CO₃, acetone, rt; (iii) Ph₃PCH₃I, *n*-BuLi, THF, 0 °C; (iv) ADmix- α , *t*-BuOH–H₂O = 1:1, 0 °C, 80% in four steps; (b) imidozole, TBSCl, CH₂Cl₂, 0 °C, 95%; (c) (i) *i*-Pr₂NEt, MOMCl, CH₂Cl₂, reflux; (ii) TBAF, THF, rt, 90% in two steps; (d) (COCl₂, DMSO, Et₃N, CH₂Cl₂, -78 °C, 88%; (e) Ph₃P=CH(Me)CO₂Et, toluene, 80 °C, 98%; (f) OsO₄, NMO, THF–H₂O = 3:1, rt, dr = 6:1, 70%; (g) 2,2-dimethoxypropane, 10% PPTS, CH₂Cl₂, 60 °C, 83%; (h) Raney-Ni, H₂, ethanol–methanol = 4:1, 90%; (i) propiolic acid, DMAP, DCC, CH₂Cl₂, 70%; (j) THF–HCl = 4:1, rt, 70%; (k) AuCl₃, 5 mol %; AgOTf, 15 mol %; ClCH₂CH₂Cl, rt, 50%.

ee by chiral HPLC analysis. After protection of the secondary alcohol as its methoxy methyl ether (MOM), the TBS group was deprotected with tetrabutyl ammonium fluoride (TBAF) to provide the primary alcohol **13** in overall 90% yield in two steps. A combination of Swern oxidation⁴ and Wittig–Horner–Emmons reaction delivered the trisubstituted *E*-olefin **7** as a single isomer from **13** in 87% yield.

Dihydroxylation of α , β -unsaturated ester 7 gave the desired diol 14 with 6:1 diastereoselectivity⁵ in 70% yield.

After careful purification by flash chromatography, 14 was treated with 2,2-methoxypropane⁶ to afford acetonide 15. Removal of the benzyl group with Raney-Ni resulted in the formation of phenol 16 in 72% overall yield for two steps. Acylation of hydroxyl of 16 in the presence of DCC and DMAP produced ester 6 in 70% yield,⁷ and the stereochemical structure of 6 was determined by single-crystal X-ray analysis as shown in Figure 2.⁸ Deprotection of MOM, deacetonization and lactonization of compound 6 in THF–HCl provided 5. With the key intermediate 5 in

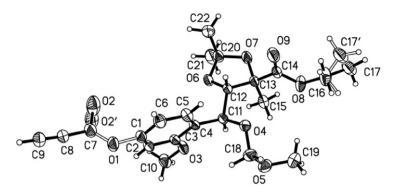


Figure 2. X-ray crystallography of 6.

hand, after many trials,^{9,10} we eventually discovered a efficient hydroarylation reaction of the alkyne and alkene to form C–C bonds.¹¹ It was proposed that an arygold(III) species was likely generated from electrophilic metallation of the aryl ring by AuCl₃. Then, the arygold(III) was added to propiotic ester to give the 1,4-addition product. The reaction catalyzed by AuCl₃/AgOTf under mild conditions in dichloroethane gave the desired target molecule **2** in 50% yield. Synthetic **2** exhibited ¹H, ¹³C NMR spectral data and specific rotation was identical to those published for the natural product.²

3. Conclusion

In summary, the first total synthesis of hydramicromelin B **2** has been achieved within 16 steps in 7.5% overall yield. The absolute stereochemistry at C **11**, C **12** and C **13** are (*S*)-, (*S*)- and (*R*), respectively, so we established the absolute configuration of hydramicromelin B. Construction of the coumarin ring with AuCl₃/AgOTf catalyst system was reported for the first time in this type of natural products synthesis, and it should be applied to the total synthesis of other molecules of this family which was underway in our laboratory.

4. Experimental

4.1. General

Dichloromethane (DCM) and tetrahydrofuran (THF) were distilled prior to use. All other reagents and solvents were obtained from commercial sources and used without further purification. Reactions were routinely carried out under an atmosphere of dry nitrogen with magnetic stirring. Products in organic solvents were dried with anhydrous sodium sulfate before concentration in vacuo. All reported melting points were uncorrected. HPLC analysis of compound 12 was performed on Waters 600 system with a Chiralcel OD-H column (Dikma Chiralcel OD 10U 250×4.6 M, hexane/2-propanol = 95:5, flow rate = 1 mL/min, detected at 254 nm on a Prostar330 detector). TLC was monitored for all reactions. Purification of products was conducted by flash column chromatography on silica gel (200-300 mesh) purchased from Yan Tai Yuan Bo Silica Gel Co.

4.2. Compound 12

To a solution of 11 (274 mg, 1.0 mmol) in CH₂Cl₂ (10 mL) was added imidazole (82 mg, 1.2 mmol) at 0 °C. After that, slow addition of TBSCl (166 mg, 1.1 mmol) in CH₂Cl₂ (15 mL) to the above solution. The reaction was stirred for 30 min and quenched with water and extracted with CH₂Cl₂. The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo. Flash chromatography (30:1, petrol/EtOAc) gave 12 as a colorless oil (369 mg, 95%). $[\alpha]_{D}^{25} = +21.6$ (*c* 4.0, CHCl₃); IR (neat): 3457, 2930, 1613, 1505 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 0.05 (s, 6H), 0.91 (s, 9H), 2.97 (d, J = 3.6 Hz, 1H), 3.48 (dd, $J_1 = 8.1$ Hz, $J_2 = 9.9$ Hz, 1H), 3.79 (s, 3H), 3.83 (dd, $J_1 = 3.3$ Hz, $J_2 = 9.9$ Hz, 1H), 4.98–5.02 (m, 1H), 5.06 (s, 2H), 6.52 (d, J = 2.4 Hz, 1H), 6.58 (dd, $J_1 = 2.4$ Hz, $J_2 = 8.1$ Hz, 1H), 7.33–7.45 (m, 6H). ¹³C NMR (75 MHz, CDCl₃): δ -5.4, 18.3, 25.9, 55.2, 67.5, 69.4, 70.1, 99.1, 104.9, 121.2, 127.5, 127.6, 128.0, 128.6, 136.8, 157.3, 159.3. HRMS (m/z): $[M+Na]^+$ calcd for C₂₂H₃₂O₄SiNa, 411.2070; found, 411.2079.

4.3. Compound 8

A solution of oxalyl chloride (0.26 mL, 3 mmol) in dry CH₂Cl₂ (15 mL) at -78 °C was charged with dry DMSO (0.43 mL, 6 mmol in 5 mL CH₂Cl₂) and alcohol 13 (636 mg, 2 mol in 5 mL CH₂Cl₂). The reaction mixture was stirred at -78 °C for 30 min before Et₃N (1.1 mL, 8 mmol) was slowly added. After being stirred at -78 °C for another 30 min, the reaction mixture was allowed to warm to room temperature. Being quenched with H₂O (20 mL), the reaction mixture was extracted with CH_2Cl_2 $(3 \times 20 \text{ mL})$. The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. Flash chromatography (30:1, petrol/ EtOAc) provided 8 as a colorless oil (556 mg, 88%). $[\alpha]_{D}^{25} = +177$ (c 2.0, CHCl₃); IR (neat): 2826, 1734, 1611, 1587, 1202, 1022 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 3.40 (s, 3H), 3.80 (s, 3H), 4.73 (s, 2H), 5.06 (s, 2H), 5.29 (s, 1H), 6.57 (s, 1H), 6.60 (s, 1H), 7.22 (d, J = 7.2 Hz, 1H), 7.34–7.45 (m, 5H), 9.68 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 55.5, 55.7, 70.0, 78.2, 94.6, 99.6, 105.4, 115.1, 127.4, 128.0, 128.5, 130.6, 136.4, 158.2, 160.7, 198.3. HRMS (m/z): $[M]^+$ calcd for $C_{18}H_{20}O_5$, 316.1311; found, 316.0945.

4.4. Compound 7

To a stirred solution of aldehyde 8 (443 mg, 1.4 mmol) in dry toluene (25 mL) was added Ph₃P=CH(Me)CO₂Et (760 mg, 2.1 mmol), and the mixture was then heated at 100 °C with stirring for 12 h. The solvent was removed in vacuo and the residue washed with brine and extracted with EtOAc $(3 \times 20 \text{ mL})$. The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. Flash chromatography (10:1, petrol/EtOAc) afforded 7 (555 mg, 1.4 mmol) as a colorless oil. $[\alpha]_D^{25} = +2.7$ (c 10.1, CHCl₃); IR (neat): 3032, 1710, 1652, 1242, 1201 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.28 (t, J = 7.2 Hz, 3H), 1.94 (s, 3H), 3.37 (s, 3H), 3.79 (s, 3H), 4.17 (q, J = 7.2 Hz, 2H), 4.62 (s, 2H), 5.05 (s, 2H), 5.80 (d, J = 8.8 Hz, 1H), 6.52 (d, J = 2.4 Hz, 1H), 6.58 (dd, $J_1 = 2.4$ Hz, $J_2 = 8.0$ Hz, 1H), 6.80 (d, J = 8.8 Hz, 1H), 7.33–7.44 (m, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 12.7, 14.1, 55.3, 55.4, 60.6, 67.8, 70.0, 93.7, 99.2, 105.3, 120.8, 127.5, 128.0, 128.6, 128.7, 136.7, 140.2, 157.8, 159.7, 168.0. HRMS (m/z): $[M]^+$ calcd for C₂₃H₂₈O₆, 400.1886; found, 400.2312.

4.5. Compound 14

To a solution of 7 (100 mg, 0.25 mmol) in THF (12 mL) and H_2O (4 mL) were added OsO_4 (4.5 mg, 0.0125 mmol) and NMO (32 mg, 0.275 mmol), and the reaction was stirred at room temperature for 4 h before being quenched with saturated Na₂SO₃ solution. The mixture was extracted with EtOAc. The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo to give the diol mixture. Careful flash chromatography (100:1, CH_2Cl_2/CH_3COCH_3) afforded the desired diol as a colorless oil (64 mg, 70%). $[\alpha]_D^{25} = +20$ (*c* 2.0, CHCl₃); IR (neat): 3502, 1733, 1252, 1157, 1029 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.28 (t, J = 7.2 Hz, 3H), 1.54 (s, 3H), 2.62 (br, 1H), 3.35 (s, 3H), 3.78 (d, J = 6.3 Hz, 1H), 3.80 (s, 3H), 3.97 (br, 1H), 4.15 (q, J = 7.2 Hz, 2H), 4.50 (s, 2H), 5.04 (s, 2H), 5.23 (d, J = 6.3 Hz, 1H), 6.53 (d, J = 2.1 Hz, 1H), 6.60 (dd, $J_1 = 2.1$ Hz, $J_2 = 8.1$ Hz, 1H), 7.30–7.44 (m, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 23.4, 55.6, 56.4, 61.8, 70.1, 76.6, 78.0, 94.6, 99.2, 105.7, 119.0, 127.5, 128.1, 128.6, 129.2, 136.8, 158.7, 159.9, 175.8. HRMS (m/z): $[M]^+$ calcd for C₂₃H₃₀O₈, 434.1941; found, 434.1985.

4.6. Compound 15

Upon the addition of *para*-toluenesulfonic acid monohydrate (10 mg, 0.1 mmol) to a stirred solution of diol **14** (434 mg, 1.0 mmol) and 2,2-dimethoxypropane (0.2 mL, 2 mmol) in CH₂Cl₂ (30 mL), the reaction was heated at 50 °C for 8 h before being quenched with H₂O (20 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL) after separated from the organic layer. The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. Flash chromatography (20:1, petrol/EtOAc) afforded acetonide **15** as a colorless oil (393 mg, 83%). $[\alpha]_{D}^{25} = +34$ (*c* 2.1, CHCl₃); IR (neat): 2988, 1739, 1611, 1505, 1060, 1022 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.30 (t, J = 7.2 Hz, 3H), 1.36 (s, 3H), 1.39 (s, 3H), 1.54 (s, 3H), 3.32 (s, 3H), 3.80 (s,

3H), 4.22 (q, J = 7.2 Hz, 2H), 4.40 (d, J = 7.2 Hz, 1H), 4.46 (d, J = 7.2 Hz, 1H), 4.78 (d, J = 9.0 Hz, 1H), 5.04 (s, 2H), 5.17 (d, J = 9.0 Hz, 1H), 6.54 (d, J = 2.4 Hz, 1H), 6.60 (dd, $J_1 = 2.4$ Hz, $J_2 = 8.4$ Hz, 1H), 7.33–7.46 (m, 6H). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 19.1, 25.7, 28.1, 55.7, 56.4, 61.3, 70.0, 82.0, 82.7, 94.2, 99.3, 105.6, 109.4, 119.6, 127.6, 128.0, 128.6, 129.7, 136.8, 159.2, 159.8, 173.0. HRMS (m/z): [M]⁺ calcd for C₂₆H₃₄O₈, 474.2254; found, 474.2046.

4.7. Compound 16

To a solution of 15 (237 mg, 0.5 mmol) in ethanol (8 mL) and methanol (2 mL) was added Raney-Ni (100 mg) in one portion. The reaction mixture was stirred under atmosphere of H₂ for 24 h before filtering through a pad of Celite. The pad was washed repeatedly with ethyl acetate and the wash was combined with filtrate. Concentration in vacuo provided compound 16 as a white solid (346 mg, 90%). Mp: 97–99 °C; $[\alpha]_{D}^{25} = +90$ (*c* 4.2, CHCl₃); IR (neat) 3409, 1615, 1510, 1272, 1200, 1023, 1075 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.27 (t, J = 7.2 Hz, 3H), 1.37 (s, 3H), 1.39 (s, 3H), 1.54 (s, 3H), 3.31 (s, 3H), 3.72 (s, 3H), 4.22 (q, J = 7.2 Hz, 2H), 4.39 (d, J = 7.8 Hz, 1H), 4.46 (d, J = 7.8 Hz, 1H), 4.77 (d, J = 8.7 Hz, 1H), 5.13 (d, J = 8.7 Hz, 1H), 6.05 (br, 1H), 6.27 (s, 1H), 6.32 (d, J = 8.1 Hz, 1H), 7.20 (d, J = 8.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 19.1, 25.7, 28.0, 55.5, 56.4, 61.5, 82.1, 82.8, 94.1, 99.1, 107.6, 109.6, 118.3, 129.7, 157.1, 159.3, 173.0. HRMS (m/z): $[M]^+$ calcd for C₁₉H₂₈O₈, 384.1784; found, 384.2086.

4.8. Compound 6

Dicyclohexylcarbodiimide (DCC) (272 mg, 1.0 mmol) was added to a solution of propiolic acid (93 mg, 1.0 mmol), dimethylaminopyridine (DMAP) (10 mg, 10% mmol), and phenol 16 (255 mg, 0.66 mmol) in 20 mL CH₂Cl₂ at 0 °C under argon. The reaction mixture was stirred at the same temperature overnight. After filtering off the precipitate, the filtrate was concentrated and purified by flash chromatography. Compound 6 was obtained as a white solid (305 mg, 70%). Mp: 134–136 °C; $[\alpha]_D^{25} = +55 (c \ 1.6, CHCl_3);$ IR (neat) 2121, 1736, 1263, 1197, 1102, 1025 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.28 (t, J = 7.2 Hz, 3H), 1.33 (s, 3H), 1.37 (s, 3H), 1.52 (s, 3H), 3.07 (s, 1H), 3.30 (s, 3H), 3.82 (s, 3H), 4.22 (q, J = 7.2 Hz, 2H), 4.44 (s, 2H), 4.68 (d, J = 6.3 Hz, 1H), 5.21 (d, J = 6.3 Hz, 1H), 6.67 (d, J = 1.5 Hz, 1H), 6.79 (dd, $J_1 = 1.5$ Hz, $J_2 = 6.3$ Hz, 1H), 7.44 (d, J = 6.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 19.3, 25.6, 28.0, 55.9, 56.5, 61.4, 69.6, 74.2, 76.6, 82.1, 82.7, 94.7, 104.5, 109.5, 113.2, 125.7, 129.3, 150.3, 150.7, 158.8, 172.9. HRMS (m/z): $[M]^+$ calcd for C₂₂H₂₈O₉, 436.1733; found, 436.1784.

4.9. Compound 5

A solution of **6** (436 mg, 1.0 mmol) in 8 mL THF and 2 mL 6 M HCl was stirred at room temperature for 4 h. The solvent was removed in vacuo and the residue was washed with brine and extracted with EtOAc $(3 \times 10 \text{ mL})$. The combined organic phase was washed with brine, dried over

anhydrous Na₂SO₄ and concentrated in vacuo. Flash chromatography (5:1, petrol/EtOAc) afforded lactone **5** as a colorless oil (358 mg, 70%). $[\alpha]_D^{25} = +17$ (*c* 1.0, CHCl₃); IR (neat): 2988, 1739, 1611, 1505, 1060, 1022 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.52 (s, 3H), 1.64 (s, 1H), 2.74 (s, 1H), 3.11 (s, 1H), 3.85 (s, 3H), 4.36 (d, J =3.3 Hz, 1H), 6.03 (d, J = 3.3 Hz, 1H), 6.74 (d, J = 2.4 Hz, 1H), 6.83 (dd, $J_1 =$ 2.4 Hz, $J_2 =$ 8.7 Hz, 1H), 7.47 (d, J =8.7 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 18.3, 55.8, 74.0, 75.0, 76.8, 77.2, 79.1, 104.3, 113.4, 120.0, 128.5, 150.8, 150.9, 156.6, 176.4. HRMS (m/z): [M+NH₄]⁺ calcd for C₂₆H₃₈O₈N, 324.1078; found, 324.0154.

4.10. Compound 2

A portion of aryl alkynoate (22 mg, 71 µmol) was mixed with AuCl₃ (1 mg, 5 mol %) and AgOTf (3 mg, 15 mol %) in 1.5 mL of dichloromethane and stirred at 40 °C for 8 h until the starting material had disappeared. The residue was purified by flash chromatography (2:1, petrol/EtOAc) to give the natural product hydramicromelin B (10 mg, 50%). $[\alpha]_{D}^{25} = +5$ (*c* 0.2, C₅H₅N); IR 1711, 1540, 1653 cm⁻¹. ¹H NMR (300 MHz, C₅D₅N): δ 1.97 (s, 3H), 3.67 (s, 3.65), 5.15 (d, *J* = 7.5 Hz, 1H), 5.86 (d, *J* = 7.5 Hz, 1H), 6.34 (d, *J* = 9.3 Hz, 1H), 6.88 (s, 1H), 7.69 (s, 1H). ¹³C NMR (75 MHz, C₅D₅N): δ 19.1, 56.3, 76.5, 79.1, 80.6, 99.8, 112.6, 113.7, 123.4, 128.4, 143.7, 156.5, 160.6, 179.1. HRMS (*m*/*z*): [M+H]⁺ calcd for C₁₅H₁₅O₇, 307.0735; found, 307.0812.

Acknowledgments

We are grateful for the generous financial support by the Special Doctorial Program Funds of the Ministry of Education of China (20040730008), NSFC (QT program, No. 20572037), NCET-05-0879, the key grant project of Chinese ministry of Education (No. 105169) and Gansu Science Foundation (3ZS051-A25-004).

References

 Lamberton, J. A.; Price, J. R.; Redcliffe, A. H. Aust. J. Chem. 1967, 20, 973–979.

- (a) Cassady, J. M.; Ojima, N.; Chang, C. J.; Malaughlin, J. L. J. Nat. Prod. 1979, 42, 274–278; (b) He, H. P.; Zou, Y.; Mao, S. Y.; Hao, X. Y.; Zuo, Y.; Hao, X. P. Chin. Chem. Lett. 2001, 12, 603–606.
- (a) Mendelson, W. L.; Holnes, M.; Dougherty, J. Synth. Commun. 1996, 26, 593–597; (b) Jung, M. E.; Kaas, S. M. Tetrahedron Lett. 1989, 30, 641–644; (c) Hollywood, F.; Suschitzky, H. Synthesis 1982, 662–665; (d) Sharpless, K. B.; Amberg, L.; Bennani, Y. L. J. Org. Chem. 1992, 57, 2768– 2771.
- Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480–2482.
- Vicente, J.; Betzemeier, B.; Rychnovsky, S. D. Org. Lett. 2005, 7, 1853–1856.
- Raghavan, S.; Joseph, S. C. Tetrahedron Lett. 2003, 44, 8237– 8239.
- (a) Ramachandran, P. V.; Michael, T. R. *Tetrahedron Lett.* 2005, 46, 2547–2549; (b) Neises, B.; Steglich, W. Angew. Chem., Int. Ed. Engl. 1978, 17, 526–528.
- 8. Crystal data for compound 6: $C_{22}H_{28}O_9$, M = 436.44, $0.59 \times 0.42 \times 0.41 \text{ mm}^3$, triclinic, space group $P\overline{1}$ (No. 1), a = 10.1759(8), b = 11.0415(12), c = 11.2677(13) Å $\alpha = 95.662(2)^\circ$, $\beta = 96.243(2)^\circ$, $\gamma = 113.477(3)^\circ$, V = 1140.2(2) Å³, Z = 2, $D_c = 1.271$ g/cm₃, F(000) = 464, MoK α radiation, $\lambda = 0.71073$ Å, T = 298(2) K, $2\theta_{\text{max}} = 50.0^\circ$, 5939 reflections collected, 3932 unique ($R_{\text{int}} = 0.0265$). Final GooF = 1.004, $R_1 = 0.0501$, $wR_2 = 0.1191$, R indices based on 2270 reflections with $I > 2\sigma(I)$ (refinement on F^2), 295 parameters, 0 restraints. Lp and absorption corrections applied, $\mu = 0.099 \text{ mm}^{-1}$.
- (a) Graham, S. R.; Murphy, J. A.; Kennedy, A. R. J. Chem. Soc., Perkin Trans. 1 1999, 3071–3073; (b) Hoefnagel, A. J.; Gunnemegh, E. A.; Downing, R. S.; Bekkum, H. V. J. Chem. Soc., Chem. Commun. 1995, 225–226; (c) Kelin, Li.; Jon, A. T. J. Org. Chem. 2005, 70, 6515–6518; (d) George, A. K.; Jone, O. P. J. Org. Chem. 1979, 44, 2480–2482; (e) Jill, A. P.; Henry, R. J. Org. Chem. 1982, 77, 946–950; (f) Lloyd, L. W.; Samir, M. S. J. Chem. Eng. Data 1971, 16, 101– 102.
- (a) Trost, B. M.; Toest, F. D. J. Am. Chem. Soc. 1996, 118, 6305–6306; (b) Trost, B. M.; Toest, F. D. J. Am. Chem. Soc. 1998, 120, 9074–9075; (c) Jia, C. G.; Piao, D. G.; Fujiwara, Y. J. Org. Chem. 2000, 65, 7516–7522; (d) Jia, C. G.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633–639; (e) Jia, C. G.; Lu, W. J.; Oymada, J.; Kitamura, T.; Fujiwara, Y. J. Am. Chem. Soc. 2000, 122, 7252–7263.
- (a) Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669–3671; (b) So, W. Y. J. Org. Chem. 2006, 71, 2521–2523.